Toyota Corolla Cross Owners & Service Manuals

Toyota Corolla Cross: Engine Stalls

DESCRIPTION

Problem Symptom

Suspected Area

Trouble Area

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high

Strong engine vibration due to above symptoms

  • Ignition malfunction
  • Deviation in air fuel ratio (Excessive or insufficient intake air volume or fuel supply)
  • Insufficient compression
  • Changes in load from another system

Ignition system

  • Spark plug
  • Ignition coil assembly

Fuel system

  • Direct fuel injector assembly
  • Port fuel injector assembly
  • Fuel pump (for high pressure side)
  • Fuel pump (for low pressure side)
  • Fuel pump control circuit
  • Fuel suction plate sub-assembly
  • Fuel main valve assembly
  • Fuel line
  • Purge VSV system
  • Fuel quality (existence of foreign matter, degradation)

Intake and exhaust systems

  • EGR system
  • Mass air flow meter sub-assembly
  • Intake system

    (Air leaks or deposit accumulation)

  • Throttle body with motor assembly
  • Air fuel ratio sensor (sensor 1)
  • Air fuel ratio sensor (sensor 2)
  • Cam timing control motor with EDU assembly
  • Cam timing oil control solenoid assembly
  • Variable Valve Timing system (VVT-iE, VVT-i system)

Other control systems

  • ECM
  • Wire harness or connector
  • Knock control sensor
  • Engine coolant temperature sensor

Engine

  • Water inlet with thermostat sub-assembly
  • Engine assembly

High load from another system

  • Air conditioning system
  • Power steering system
  • Electrical load signal system
  • CVT system

SYMPTOM AND CAUSE OF SYSTEM MALFUNCTION

HINT:

The following are descriptions of the characteristics of each system malfunction. After understanding the link between the causes and symptoms, perform the inspection of each component. Even if the problem symptom does not recur, signs of the malfunction may be found in the Data List.

(a) Ignition system

Spark plug

Main cause of malfunction

Performance degradation (wear, existence of foreign matter, etc.)

Symptom

Engine speed fluctuation due to abnormal combustion

Data List

Misfire Count Cylinder #1 to #4

HINT:

If the spark plug of the malfunctioning cylinder is abnormally wet with fuel, a leaking fuel injector assembly is suspected.

Ignition coil assembly

Main cause of malfunction

Internal malfunction

Problem symptom

Engine speed fluctuation due to abnormal combustion

Data List

Misfire Count Cylinder #1 to #4

(b) Fuel system

Fuel injector assembly

Main cause of malfunction

Blockage

Problem symptom

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high

Data List

  • Target Air-Fuel Ratio
  • Short FT B1S1
  • Long FT B1S1
  • Total FT Bank 1
  • Fuel System Status Bank 1
  • A/F Learn Value Idle (Port) Bank 1
  • A/F Learn Value Low (Port) Bank 1
  • A/F Learn Value Mid No.1 (Port) Bank 1
  • A/F Learn Value Mid No.2 (Port) Bank 1
  • A/F Learn Value High (Port) Bank 1
  • A/F Learn Value Idle Bank 1
  • A/F Learn Value Low Bank 1
  • A/F Learn Value Mid No.1 Bank 1
  • A/F Learn Value Mid No.2 Bank 1
  • A/F Learn Value High Bank 1

HINT:

If the engine malfunction disappears when the fuel injection volume is increased or decreased using the Control the Injection Volume, the respective cylinder may be malfunctioning.

Purge VSV

Main cause of malfunction

Purge VSV stuck open

Symptom

Engine speed fluctuation due to abnormal combustion

Data List

  • EVAP (Purge) VSV
  • Evap Purge Flow
  • EVAP Purge Density Learn Value
  • EVAP Purge VSV
  • Purge Cut VSV Duty
Fuel system

HINT:

If the air fuel ratio becomes lean only when the engine is running under a high load and at a high engine speed, clogging of the fuel pump or fuel filter is suspected.

Fuel quality

Main cause of malfunction

  • Fuel degradation due to age or water contamination
  • Low fuel quality
  • Addition of fuel additive

Problem symptom

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high
  • Engine is difficult to start

(c) Intake and exhaust systems

EGR system

Main cause of malfunction

Improper operation, sticking

Problem symptom

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high
  • Engine is difficult to start, lacks power or stalls

Data List

  • Target EGR Valve Position No.1
  • EGR Step Position
    • Normal condition: Actual EGR valve position = Target EGR valve position +/-5% (Fully closed: 0%, Fully open: 100%)
    • Perform the Active Test "Control the EGR Step Position" and check if the vehicle condition changes when the EGR valve position is changed
    • When the ignition switch is turned ON (engine not started), the EGR valve is fully closed
Mass air flow meter sub-assembly

Main cause of malfunction

Performance degradation (existence of foreign matter, etc.)

Problem symptom

Lack of power

Data List

Mass Air Flow Sensor

HINT:

If the value of the Data List item "Mass Air Flow Sensor" is abnormal, a malfunction of the mass air flow meter sub-assembly is suspected.

Throttle system

Main cause of malfunction

Inappropriate trim volume adjustment due to accumulation of deposits

Problem symptom

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high

Data List

  • Engine Stall Control F/B Flow
  • ISC F/B Learn Torque
  • ISC Total AUXS Torque
  • ISC F/B Torque
  • Sum of ISC F/B Torque (Recent)
  • ISC AUXS Torque (Alternator)
  • ISC AUXS Torque (Air Conditioner)
  • Throttle Air Flow F/B Value
Air fuel ratio sensor (sensor 1), Air fuel ratio sensor (sensor 2)

Main cause of malfunction

Deviation in sensor characteristics

Problem symptom

Abnormal combustion due to deviation of actual air fuel ratio from calculated ratio

Data List

  • A/F (O2) Sensor Current B1S1
  • A/F (O2) Sensor Current B1S2
  • Fuel System Status Bank 1

(d) Engine

Engine assembly

Main cause of malfunction

  • Compression loss
  • Accumulation of deposits

    (Combustion chamber, intake valve or intake manifold)

Problem symptom

  • Engine speed fluctuation due to abnormal combustion
  • Idle speed too low or high
  • Hesitation during acceleration or stalling

HINT:

  • If deposits have accumulated in the combustion chamber or on an intake valve, the engine may stall when deposits are caught on an intake valve.
  • When performing the Active Test "Check the Cylinder Compression", if the speed of one cylinder is higher than the others, the cylinder may have a compression loss.
  • If deposits accumulate on the intake valves, the supply of fuel may be delayed due to adherence of the fuel to the deposits, causing a rough idle.
VVT

Main cause of malfunction

Camshaft timing control motor with EDU assembly stuck to advance side or cam timing oil control solenoid assembly stuck open

Symptom

Abnormal combustion due to excessive valve overlap

Data List

  • VVT Advance Fail
  • Intake VVT Change Angle Bank 1
  • Exhaust VVT Hold Learn Value Bank 1
  • Exhaust VVT Change Angle Bank 1
  • Exhaust VVT OCV Control Duty Ratio Bank 1
  • Intake VVT Target Angle Bank 1
  • Exhaust VVT Target Angle Bank 1
  • Intake VVT Timing Most Over-Retarded Learn Value Bank 1
  • Exhaust VVT Timing Most Over-Advanced Learn Value Bank 1
  • VVT-iE Duty Ratio Bank 1
  • VVT-iE Motor Direction Bank 1
  • VVT-iE Opening Angle Bank 1

Data List Items Related to Engine Stalls

HINT:

Depending on the vehicle model, the applicable Data List items may vary. Data List items other than the ones used in the diagnostic procedure are for reference only.

  • Mass Air Flow Sensor
  • Engine Stall Control F/B Flow
  • ISC F/B Learn Torque
  • ISC Total AUXS Torque
  • ISC F/B Torque
  • Sum of ISC F/B Torque (Recent)
  • ISC AUXS Torque (Alternator)
  • ISC AUXS Torque (Air Conditioner)
  • Throttle Air Flow F/B Value
  • Target Fuel Pressure (High)
  • Target Fuel Pressure (Low) / Target Fuel Pressure 2
  • Fuel Pressure (High)
  • Fuel Pressure (Low) / Fuel Pressure 2
  • High Pressure Fuel Pump Duty Ratio (D4)
  • High Pressure Fuel Pump Discharge Rate
  • Target Air-Fuel Ratio
  • A/F (O2) Sensor Current B1S1
  • A/F (O2) Sensor Current B1S2
  • Short FT B1S1
  • Long FT B1S2
  • Total FT Bank 1
  • Fuel System Status Bank 1
  • A/F Learn Value Idle (Port) Bank 1
  • A/F Learn Value Low (Port) Bank 1
  • A/F Learn Value Mid No.1 (Port) Bank 1
  • A/F Learn Value Mid No.2 (Port) Bank 1
  • A/F Learn Value High (Port) Bank 1
  • A/F Learn Value Idle Bank 1
  • A/F Learn Value Low Bank 1
  • A/F Learn Value Mid No.1 Bank 1
  • A/F Learn Value Mid No.2 Bank 1
  • A/F Learn Value High Bank 1
  • Target EGR Valve Position No.1
  • EGR Step Position
  • VVT Advance Fail
  • Intake VVT Change Angle Bank 1
  • Exhaust VVT Hold Learn Value Bank 1
  • Exhaust VVT Change Angle Bank 1
  • Exhaust VVT OCV Control Duty Ratio Bank 1
  • Intake VVT Target Angle Bank 1
  • Exhaust VVT Target Angle Bank 1
  • Intake VVT Timing Most Over-Retarded Learn Value Bank 1
  • Exhaust VVT Timing Most Over-Advanced Learn Value Bank 1
  • VVT-iE Duty Ratio Bank 1
  • VVT-iE Motor Direction Bank 1
  • VVT-iE Opening Angle Bank 1
  • Misfire Count Cylinder #1
  • Misfire Count Cylinder #2
  • Misfire Count Cylinder #3
  • Misfire Count Cylinder #4

Vehicle Control History Freeze Frame Data Items Related to Engine Stalls

HINT:

The frequency of the malfunction can be determined by confirming the number of times the symptom occurred.

  • Engine Stall Count
  • Engine Stall Count (Compression Leakage)

CAUTION / NOTICE / HINT

HINT:

  • If any other DTCs are output, perform troubleshooting for those DTCs first.
  • Make sure to reproduce the conditions present when the malfunction occurred.
  • Using the GTS, read the Data List to confirm the engine operating conditions. This information can be useful when troubleshooting.
  • The vehicle condition when the problem symptoms occurred can be determined using the Vehicle Control History.
  • As the Vehicle Control History data may be overwritten whenever the trigger conditions are met, make sure to save the Vehicle Control History data before performing any inspections.
  • If the problem symptoms do not recur, attempt to reproduce the symptoms and conditions when the malfunction occurred based on the result of the customer problem analysis and Vehicle Control History. Place the priority on confirming the symptoms.
  • When performing inspections, jiggle the relevant wire harnesses and connectors in an attempt to reproduce malfunctions that do not always occur.
  • The suspected cause of the problem symptoms can be determined using the codes, items, and Freeze Frame Data within the Vehicle Control History.
  • When confirming the Freeze Frame Data, be sure to check all multi Freeze Frame Data.
  • When confirming the Freeze Frame Data, if there are multiple items related to the cause of the malfunction, perform troubleshooting for all related items.
  • If the malfunction is currently occurring, use the Data List to confirm the current vehicle condition. By using the Data List, more detailed vehicle information can be confirmed than by using the Vehicle Control History Freeze Frame Data by itself.
  • As Vehicle Control History may be stored when performing an Active Test, learning, etc., make sure to clear the Vehicle Control History before returning the vehicle to the customer.

PROCEDURE

1.

INTERVIEW THE CUSTOMER

(a) Interview the customer for details about the conditions when the engine stalled.

HINT:

  • Use any information from the customer problem analysis about the conditions of the vehicle when the malfunction occurred (how the engine stalled, conditions when the engine was restarted, etc.)
  • Depending on the conditions when the engine stalled, a malfunction in one of the following areas is suspected.

    Symptom

    Suspected Area

    Engine vibration occurs and engine stalls

    • Abnormal mass air flow meter sub-assembly output due to existence of foreign matter
    • Abnormal air fuel ratio due to malfunction of air fuel ratio sensors, air leaks in intake system or insufficient fuel supply

    Engine stalls without vibration

    Ignition stoppage, fuel injection stoppage or high load from another system

    Engine can be started with accelerator pedal depressed

    Insufficient air volume

    Engine stalls or is difficult to start immediately after engine stalled, regardless of whether engine is cold or warm

    Deposits in intake system or combustion chamber caught temporarily on intake or exhaust valve

NEXT

2.

CHECK DTC OUTPUT

(a) Perform a road test.

(b) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTCs are not output

A

DTC is output

B

B

GO TO DTC CHART

A

3.

READ VEHICLE CONTROL HISTORY FREEZE FRAME DATA AND PERFORM SYMPTOM CONFIRMATION

(a) Enter the following menus.

Powertrain > Engine > Utility

Tester Display

Vehicle Control History (RoB)

HINT:

It is also possible to display vehicle control history during the Health Check, if "Store All Data" is selected.

(b) Confirm if any data relating to the problem symptoms exist in the Vehicle Control History.

HINT:

  • The vehicle condition when the problem symptoms occurred can be determined by confirming the Vehicle Control History Freeze Frame Data.
  • As the Vehicle Control History data may be overwritten whenever the trigger conditions are met, make sure to save the Vehicle Control History data before performing any inspections.
  • Using information from the customer about when the problem symptom occurred, find the Freeze Frame Data with the appropriate Key Cycle, Total Distance Traveled, etc., to find vehicle history that may be related to the problem symptoms.

(c) Check if the problem symptoms stated by the customer are currently occurring.

HINT:

  • By using snapshot to store the Data List, the Data List items can be compared to the Vehicle Control History.
  • If the problem symptoms cannot be reproduced, refer to Check for Intermittent Problems, and try to reproduce the conditions when the problem symptoms occurred as stated by the customer. If the problem symptoms still cannot be reproduced, perform the following procedure.

    Click here

(d) Read the Data List or the Vehicle Control History Freeze Frame Data.

HINT:

  • If the malfunction is currently occurring, compare the values of the Data List items with the vehicle control history freeze frame data.
  • If the malfunction is not currently occurring, read the Vehicle Control History Freeze Frame Data.

Vehicle Control History

Vehicle Control History Freeze Frame Data / Data List While Problem Symptoms Are Occurring

Suspected Area

Proceed to

Engine Stall is stored

(Vehicle Control History Code: X0800)

-

-

A

ISC F/B Learn Torque is less than 15 Nm

-

B

ISC F/B Learn Torque is 15 Nm or higher

The offset correction value is insufficient due to deposits in the throttle body causing a low idle air flow rate.

C

Engine Stall (Compression Leakage) is stored

(Vehicle Control History Code: X0803)

Rough idle, engine stall, etc. is not currently reoccurring.

A temporary compression loss due to deposits being caught on an intake or exhaust valve, etc., is suspected.

D

Rough idle, engine stall, etc. is currently reoccurring.

A compression loss due to damage to the intake or exhaust valve, deposits being caught on an intake or exhaust valve, etc. is suspected.

E

The malfunction is not currently occurring and there is no Vehicle Control History related to the problem symptoms stated by the customer.

F

B

GO TO STEP 5

C

GO TO STEP 20

D

SYSTEM RETURNED TO NORMAL (TEMPORARY MALFUNCTION)

E

GO TO STEP 22

F

CHECK FOR INTERMITTENT PROBLEMS

A

4.

READ VALUE USING GTS (ISC F/B LEARN TORQUE)

(a) Enter the following menus.

Powertrain > Engine > Data List

Tester Display

ISC F/B Learn Torque

(b) Read the value displayed on the GTS.

Result

Proceed to

Less than 15 Nm

A

Other than above

B

A

GO TO STEP 5

B

GO TO STEP 20

5.

READ VALUE USING GTS (SHORT FT B1S1 AND LONG FT B1S1)

(a) Enter the following menus.

Powertrain > Engine > Data List

Tester Display

Short FT B1S1

Long FT B1S1

(b) Read the value displayed on the GTS.

Data List

Result

Proceed to

Short FT B1S1 + Long FT B1S1

-20% or higher, or less than 20%

A

Other than above

B

HINT:

  • "Total FT Bank 1" is used to detect an abnormal air fuel ratio. As the value of "Total FT Bank 1" is corrected by the ECM before it is displayed in the Data List, the displayed value may not be equal to the sum of the measured "Short FT B1S1" and "Long FT B1S1".
  • An abnormally lean or rich tendency can be checked by reading the following Data List items: A/F Learn Value Idle (Port) Bank 1, A/F Learn Value Low (Port) Bank 1, A/F Learn Value Mid No.1 (Port) Bank 1, A/F Learn Value Mid No.2 (Port) Bank 1, A/F Learn Value High (Port) Bank 1, A/F Learn Value Idle Bank 1, A/F Learn Value Low Bank 1, A/F Learn Value Mid No.1 Bank 1, A/F Learn Value Mid No.2 Bank 1 and A/F Learn Value High Bank 1.
  • The following may cause a lean air fuel ratio (an operating range in which the air fuel ratio learned value correction is +20% or more):
    1. Decrease in fuel injector assembly injection volume
    2. Decrease in mass air flow meter sub-assembly output (due to existence of foreign matter)
    3. Air leaks in intake system after mass air flow meter sub-assembly
    4. Decrease in fuel pressure (at fuel filter, fuel pump, fuel main valve assembly or fuel suction plate sub-assembly)
  • On vehicles which the learning value for each operating range can be checked, if the value of "A/F Learn Value High (Port) Bank 1" or "A/F Learn Value High Bank 1" only is corrected to the positive side, a malfunction in the fuel system (clogging of the fuel pump or fuel filter) is suspected.
  • On vehicles which the learning value for each operating range can be checked, if the value of "A/F Learn Value Idle (Port) Bank 1", "A/F Learn Value Low (Port) Bank 1", "A/F Learn Value Idle Bank 1" or "A/F Learn Value Low Bank 1" only is corrected to the positive side, an air leak after the mass air flow meter sub-assembly is suspected.
  • The following may cause a rich air fuel ratio (an operating range in which the air fuel ratio learned value correction is -20% or less):
    1. Increase in the fuel injector assembly injection volume
    2. Purge VSV system
B

GO TO STEP 8

A

6.

PERFORM ACTIVE TEST USING GTS (D-4S (FUEL CUT))

(a) Start the engine.

HINT:

Reproduce the vehicle conditions when the malfunction occurred. (such as after the engine is warmed up or after a cold start).

(b) Enter the following menus.

Powertrain > Engine > Active Test

Active Test Display

D-4S (A/F Control)

Data List Display

Engine Speed

(c) According to the display on the GTS, perform the Active Test and check for a malfunctioning cylinder.

HINT:

  • Perform fuel-cut of port injection and direct injection for each cylinder and check the change in the engine speed.
  • If the engine speed of a cylinder does not change while performing the Active Test, it can be determined that the cylinder is malfunctioning.
  • If the engine speed of all cylinders change while performing the Active Test, it can be determined that multiple cylinders are malfunctioning.
  • A cylinder for which the Data List item "Misfire Count Cylinder #1 to #4" increases may be malfunctioning.
  • If "Compression Leakage Count" in the Data List increases, misfiring due to insufficient compression may be occurring.

Result

Proceed to

One cylinder is malfunctioning

A

Multiple or all cylinders are malfunctioning, or the malfunctioning cylinder cannot be determined.

B

A

GO TO STEP 22

B

7.

PERFORM ACTIVE TEST USING GTS (CONTROL THE EGR STEP POSITION)

(a) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

HINT:

The A/C switch and all accessory switches should be off.

(b) Enter the following menus.

Powertrain > Engine > Active Test

Active Test Display

Control the EGR Step Position

Data List Display

Engine Speed

Coolant Temperature

(c) Perform the Active Test and check the vehicle condition when operating the EGR valve assembly.

NOTICE:

  • Do not leave the EGR valve open for 10 seconds or more during the Active Test.
  • Be sure to return the EGR valve to step 0 when the Active Test is completed.
  • Do not open the EGR valve 30 steps or more during the Active Test.

HINT:

Operate the EGR valve between step 0 and 30 when performing this step.

Result

Proceed to

Vehicle condition changes during the Active Test

(Malfunction occurs when the EGR valve is open and disappears when the EGR valve is closed)

A

Vehicle condition does not change during the Active Test

(Malfunction occurs whether the EGR valve is open or closed)

B

HINT:

During Active Test, if the idling condition does not change in response to EGR step position, then there is probably a malfunction in the EGR valve.

B

GO TO STEP 19

A

8.

READ VALUE USING GTS (MASS AIR FLOW SENSOR)

(a) Start the engine and warm it up until the engine coolant temperature 75°C (167°F) or higher with all the accessories switched off.

(b) Enter the following menus.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Mass Air Flow Sensor

Coolant Temperature

(c) According to the display on the GTS, read the Data List when the engine is running.

Result

Proceed to

Idling (engine warmed up): 1.5 to 3.3 gm/sec

Engine speed 3000 rpm (without load): 8.0 to 13.0 gm/sec

A

Other than above

B

B

GO TO STEP 18

A

9.

PERFORM ACTIVE TEST USING GTS (D-4S (INJECTION VOLUME))

(a) Start the engine and warm it up until the engine coolant temperature 75°C (167°F) or higher with all the accessories switched off.

(b) Warm up the air fuel ratio sensors at an engine speed of 2500 rpm for 90 seconds.

(c) Idle the engine.

(d) Enter the following menus.

Powertrain > Engine > Active Test

Active Test Display

D-4S (Injection Volume)

Data List Display

Coolant Temperature

A/F (O2) Sensor Current B1S1

A/F (O2) Sensor Current B1S2

(e) According to the display on the GTS, perform the Active Test and check the vehicle conditions when increasing and decreasing the fuel injection volume of port injection and direct injection.

NOTICE:

  • The air fuel ratio sensor (sensor 1) has an output delay of a few seconds and the air fuel ratio sensor (sensor 2) has a maximum output delay of approximately 20 seconds.
  • Read the output current immediately after warming up the air fuel ratio sensors to avoid an inaccurate reading due to a sensor cooling.

HINT:

  • Increase and decrease the fuel injection volume of the port injection and direct injection simultaneously and check the vehicle condition.
  • Change the fuel injection volume between -12 to 12%.

Standard:

GTS Display

(Sensor)

Injection Volume

Current

A/F (O2) Sensor Current B1S1

(Air fuel ratio (sensor 1))

12%

Below -0.075 mA

-12%

More than 0.037 mA

A/F (O2) Sensor Current B1S2

(Air fuel ratio (sensor 2))

12%

Below -0.86 mA

-12%

More than 0.33 mA

Result

Proceed to

Output current values are abnormal

A

Malfunction disappears when fuel injection volume is increased

B

Malfunction is still present when fuel injection volume is increased, even if output current values are normal

C

B

GO TO STEP 11

C

GO TO STEP 12

A

10.

REPLACE AIR FUEL RATIO SENSORS

(a) Replace the air fuel ratio sensor (sensor 1).

Click here

HINT:

Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 1).

Click here

(b) Replace the air fuel ratio sensor (sensor 2).

Click here

HINT:

Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 2).

Click here

NEXT

GO TO STEP 29

11.

REPLACE FUEL INJECTOR ASSEMBLY

(a) Replace the fuel injector assemblies of all cylinders.

HINT:

Perform "Inspection After Repair" after replacing the fuel injector assembly.

Click here

NEXT

GO TO STEP 29

12.

PERFORM ACTIVE TEST USING GTS (ACTIVATE THE CIRCUIT RELAY (BRUSHLESS))

(a) Enter the following menus.

Powertrain > Engine > Active Test

Tester Display

Activate the Circuit Relay (Brushless)

(b) When performing the Active Test, check for an operating sound from the fuel pump (for low pressure side).

OK:

Activate the Circuit Relay (Brushless)

Specified Condition

ON

Operating sound heard

OFF

Operating sound not heard

NG

GO TO STEP 17

OK

13.

INSPECT FUEL PUMP (FOR LOW PRESSURE SIDE)

(a) Attach a fuel pressure gauge and check the fuel pressure when cranking the engine and after stopping the engine.

Click here

Standard:

Vehicle State

Specified Condition

Cranking engine

300 to 530 kPa (3.1 to 5.4 kgf/cm2, 44 to 77 psi)

5 minutes after stopping engine

98 kPa (1.0 kgf/cm2, 14 psi) or higher

HINT:

  • If there is foreign matter such as iron particles on the fuel pump (for low pressure side), remove it.
  • Make sure that there are no leaks from the fuel lines, signs of fuel leakage or fuel odors.
NG

GO TO STEP 16

OK

14.

READ VALUE USING GTS (FUEL PRESSURE (HIGH))

(a) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(b) Enter the following menus.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Coolant Temperature

Fuel Pressure (High)

Injection Mode

(c) According to the display on the GTS, read the Data List.

Standard:

GTS Display

Condition

Specified Condition

Fuel Pressure (High)

  • Shift position: P
  • A/C: Off
  • Engine warmed up
  • Engine Speed: 3000 rpm
  • Injection Mode: Direct

2400 to 20000 kPag

NG

GO TO STEP 28

OK

15.

INSPECT OTHER RELATED COMPONENTS

(a) Inspect other related components.

HINT:

If the malfunctioning part could not be determined by performing the preceding inspections, one of the following malfunctions is suspected.

  • Deposits in the intake manifold or on an intake valve
  • Delay in fuel supply due to adherence of the fuel to the deposits
NEXT

GO TO STEP 28

16.

INSPECT RELATED PARTS

(a) Inspect the following fuel pump related parts:

  • Fuel suction plate sub-assembly
  • Fuel main valve assembly
  • Fuel lines and connecting parts
  • Fuel filter
NEXT

GO TO STEP 28

17.

REPLACE FUEL PUMP (FOR LOW PRESSURE SIDE)

(a) Replace the fuel pump (for low pressure side).

for 2WD: Click here

for AWD: Click here

HINT:

Perform "Inspection After Repair" after replacing the fuel pump (for low pressure side).

Click here

NEXT

GO TO STEP 29

18.

CHECK INTAKE SYSTEM

(a) Check for air leaks or blockage in the intake system components. If a connection problem or foreign matter is found, repair the connection or remove the foreign matter.

HINT:

  • If there is foreign matter in the intake system components, remove it before proceeding to the next step.
  • If there is no foreign matter in the intake system components, check for foreign matter in the mass air flow meter sub-assembly. If there is foreign matter in the mass air flow meter sub-assembly, remove it.
NEXT

GO TO STEP 28

19.

REPLACE EGR VALVE ASSEMBLY

(a) Replace the EGR valve assembly.

Click here

HINT:

Perform "Inspection After Repair" after replacing the EGR valve assembly.

Click here

NEXT

GO TO STEP 29

20.

REMOVE FOREIGN OBJECT (CLEAN THROTTLE BODY WITH MOTOR ASSEMBLY)

(a) Clean off any deposits from the inside of the throttle body with motor assembly.

(b) Push open the throttle valve and wipe off any carbon from the valve and bore using a piece of cloth soaked in non-residue solvent.

*1

Throttle Body with Motor Assembly

*2

Bore

*3

Valve

-

-

*a

Reference

*b

Throttle Body with Motor Assembly Cross-section Diagram

*c

When valve fully opened

*d

Do not directly apply cleaner

*e

Deposits

-

-

NOTICE:

  • Make sure that the cloth or your fingers do not get caught in the valve.
  • Make sure that foreign matter does not enter the throttle valve.
  • Do not directly apply non-residue solvent to the throttle body with motor assembly or wash the throttle body with motor assembly. Cleaning solvent may leak into the motor from the shaft and cause problems such as rust or valve movement problems.
  • If there is coating material on the edge of the valve, be careful not to remove it.

HINT:

The illustrations are for reference only. Actual parts may differ.

NEXT

21.

PERFORM CONFIRMATION DRIVING PATTERN

(a) Perform "Inspection After Repair" after cleaning the throttle body with motor assembly.

Click here

(b) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(c) Allow the engine to idle for 3 minutes or more and confirm that the engine speed is within the specified range.

HINT:

If the engine is operated without performing learning value reset and idle learning after cleaning the deposits from the throttle body with motor assembly, the idle speed may increase.

NEXT

GO TO STEP 29

22.

PERFORM ACTIVE TEST USING GTS (CHECK THE CYLINDER COMPRESSION)

HINT:

If the vehicle does not support the Active Test "Check the Cylinder Compression", measure the compression pressure. If the compression pressure is normal, go to step 23 (PERFORM ACTIVE TEST USING GTS (D-4S (INJECTION VOLUME))).

(a) Warm up the engine.

(b) Enter the following menus.

Powertrain > Engine > Active Test

Active Test Display

Check the Cylinder Compression

Data List Display

Engine Speed Cylinder #1

Engine Speed Cylinder #2

Engine Speed Cylinder #3

Engine Speed Cylinder #4

Average Engine Speed of All Cylinder

HINT:

To display the entire Data List, press the pull down menu button next to Primary. Then select Compression.

(c) Push the snapshot button to turn the snapshot function on.

HINT:

Using the snapshot function, data can be recorded during the Active Test.

(d) While the engine is not running, press the Active button to change Check the Cylinder Compression to "Start".

HINT:

After performing the above procedure, Check the Cylinder Compression will start. Fuel injection for all cylinders is prohibited and each cylinder engine speed measurement enters standby mode.

(e) Crank the engine for about 10 seconds.

(f) Monitor the engine speed (Engine Speed Cylinder #1 to #4 and Average Engine Speed of All Cylinder) displayed on the GTS.

NOTICE:

  • Do not crank the engine continuously for 20 seconds or more.
  • If it is necessary to crank the engine again after Check the Cylinder Compression has been changed to "Start" and the engine has been cranked once, press Exit to return to the Active Test menu screen. Then change Check the Cylinder Compression to "Start" and crank the engine.
  • Make sure the auxiliary battery is fully charged before performing this Active Test.

HINT:

  • At first, the GTS will display extremely high cylinder engine speed values. After approximately 10 seconds of engine cranking, the engine speed measurement of each cylinder will change to the actual engine speed.
  • If the cylinder engine speed values (Engine Speed Cylinder #1 to #4) displayed in the Data List do not change from an extremely high value, return to the Active Test menu screen, change "Check the Cylinder Compression" to "Start" and crank the engine again within 1 second.

(g) Stop cranking the engine, and then change "Check the Cylinder Compression" to "Stop" after the engine stops.

NOTICE:

  • If the Active Test is changed to "Stop" while the engine is being cranked, the engine will start.
  • When performing the Active Test, Vehicle Control History code X0810 (Engine Difficult to Start (Engine Starting Time Long)) may be stored.
  • After performing the Active Test, make sure to check and clear DTCs.

(h) Push the snapshot button to turn the snapshot function off.

(i) Select "Stored Data" on the GTS screen, select the recorded data and display the data as a graph.

HINT:

If the data is not displayed as a graph, the change of the values cannot be observed.

(j) Read the value.

HINT:

  • If the value of Data List item "Engine Speed Cylinder" of a cylinder is higher than other cylinders, the cylinder may be malfunctioning.
  • If the value of Data List item "Engine Speed Cylinder" is high for only one cylinder, compression loss is suspected.

Result

Proceed to

There is no variation in "Engine Speed Cylinder"

(All cylinders display approximately the same value for "Engine Speed Cylinder")

A

There is variation in "Engine Speed Cylinder"

(Only one cylinder displays a value for "Engine Speed Cylinder" that differs considerably)

B

B

GO TO STEP 27

A

23.

PERFORM ACTIVE TEST USING GTS (D-4S (INJECTION VOLUME))

(a) Start the engine and warm it up until the engine coolant temperature 75°C (167°F) or higher with all the accessories switched off.

(b) Idle the engine.

(c) Enter the following menus.

Powertrain > Engine > Active Test

Active Test Display

D-4S (Injection Volume)

Data List Display

Coolant Temperature

(d) According to the display on the GTS, perform the Active Test and check the vehicle conditions when increasing and decreasing the fuel injection volume of port injection and direct injection.

HINT:

  • Increase and decrease the fuel injection volume of the port injection and direct injection simultaneously and check the vehicle condition.
  • Change the fuel injection volume between the minimum and maximum range of correction (e.g. -12.5% to 24.8%).

Result

Proceed to

Malfunction is still present even if the fuel injection volume is changed

A

Malfunction disappears when the fuel injection volume is changed

B

B

GO TO STEP 26

A

24.

CHECK IGNITION SYSTEM

(a) Check the ignition system.

HINT:

  • Interchange the ignition coil assembly and spark plug of the malfunctioning cylinder with those of a known good cylinder and check if the malfunctioning cylinder returns to normal.
  • If the spark plug of the malfunctioning cylinder is abnormally wet with fuel even after the ignition coil assembly and spark plug are replaced, a leaking fuel injector assembly is suspected.

Result

Proceed to

The malfunctioning cylinder does not return to normal

A

The malfunctioning cylinder returned to normal

B

B

GO TO STEP 28

A

25.

INSPECT OTHER RELATED COMPONENTS

(a) Check the power source circuit, wire harness and connectors.

NEXT

GO TO STEP 28

26.

REPLACE FUEL INJECTOR ASSEMBLY

(a) Replace the abnormal fuel injector assembly.

HINT:

  • If the air fuel ratio learned value is corrected to the positive side for all operating ranges due to low fuel injector assembly injection volume, replace the fuel injector assemblies of all cylinders.
  • Perform "Inspection After Repair" after replacing the fuel injector assembly.

    Click here

NEXT

GO TO STEP 29

27.

CHECK CYLINDER COMPRESSION PRESSURE

(a) Measure the cylinder compression pressure. If the compression pressure of a cylinder is low, inspect the engine assembly and repair or replace parts as necessary.

Click here

NEXT

28.

REPAIR OR REPLACE MALFUNCTIONING PARTS

(a) Repair or replace the malfunctioning part.

(b) Perform "Inspection After Repair" after repairing or replacing the malfunctioning part.

Click here

NEXT

29.

CONDUCT CONFIRMATION TEST

(a) Check that the engine has returned to normal.

NEXT

END

    READ NEXT:

     Lack of Power

    DESCRIPTION Problem Symptom Suspected Area Trouble Area Engine speed fluctuation due to abnormal combustion Idle speed too low or high Strong engine vibration due

     Throttle Body

     On-vehicle Inspection

    ON-VEHICLE INSPECTION PROCEDURE 1. INSPECT THROTTLE BODY WITH MOTOR ASSEMBLY (a) Before cleaning, or after cleaning the throttle body with motor assembly and installing it to the vehicle, turn the i

    SEE MORE:

     Installation

    INSTALLATION CAUTION / NOTICE / HINT COMPONENTS (INSTALLATION) Procedure Part Name Code 1 TRANSMISSION FLOOR SHIFT ASSEMBLY - - - 2 TRANSMISSION

     Replacement

    REPLACEMENT CAUTION / NOTICE / HINT The necessary procedures (adjustment, calibration, initialization, or registration) that must be performed after parts are removed and installed, or replaced during the diaphragm oil seal removal/installation are shown below. Necessary Procedures After Part

    © 2020-2024 Copyright www.tcorollacross.com