Toyota Corolla Cross Owners & Service Manuals

Toyota Corolla Cross: Engine Coolant Pump Circuit Short to Battery (P26CA12)

DESCRIPTION

The ECM calculates the necessary cooling amount based on the engine coolant temperature, engine speed and vehicle speed, and controls the inverter water pump with motor assembly accordingly. The inverter water pump with motor assembly controls the speed of the inverter water pump with motor assembly steplessly and optimally based on a duty cycle signal sent by the ECM, which reduces engine warm-up time, improves fuel efficiency and reduces cooling loss.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Note

P26CA12

Engine Coolant Pump Circuit Short to Battery

The operation duty ratio signal (WPO) of the inverter water pump with motor assembly is a certain value or more when the inverter water pump with motor assembly operation signal is being output (1 trip detection logic).

  • Short in inverter water pump with motor assembly circuit
  • Inverter water pump with motor assembly
  • ECM

Comes on

  • SAE Code: P26CD
  • DTC for Mexico Models: Applies
Related Data List

DTC No.

Data List

P26CA12

  • Coolant Temperature
  • Electric Water Pump Target Speed
  • Electric Water Pump Speed

MONITOR DESCRIPTION

The ECM outputs an operation duty signal (WPO) to steplessly control the speed of the inverter water pump with motor assembly. The ECM outputs an operation duty signal (WPO) to the inverter water pump with motor assembly and monitors the actual duty signal (WPO) being output. When the actual operation duty signal (WPO) exceeds a certain value when outputting an operation duty signal (WPO) to the inverter water pump with motor assembly, the ECM detects a malfunction and stores a DTC.

MONITOR STRATEGY

Related DTCs

P26CD: Engine water pump circuit range check (High voltage)

Required Sensors/Components (Main)

Water inlet housing with water pump sub-assembly

Required Sensors/Components (Related)

-

Frequency of Operation

Continuous

Duration

3 seconds

MIL Operation

Immediate

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

All of the following conditions are met

-

Auxiliary battery voltage

8 V or higher

Ignition switch

ON

Time after ignition switch off to ON

0.5 seconds or more

Output duty cycle

30 to 85%

Engine water pump circuit pulse input fail (P26CA)

Not detected

TYPICAL MALFUNCTION THRESHOLDS

Both of the following conditions are met

-

Water inlet housing with water pump sub-assembly output terminal voltage level

High

Water inlet housing with water pump sub-assembly output signal

No signal

CONFIRMATION DRIVING PATTERN

HINT:

  • After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

    Click here

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here

  1. Connect the GTS to the DLC3.
  2. Turn the ignition switch to ON.
  3. Turn the GTS on.
  4. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  5. Turn the ignition switch off and wait for at least 30 seconds.
  6. Turn the ignition switch to ON [A].
  7. Turn the GTS on.
  8. Put the engine in Inspection Mode (Maintenance Mode).

    Click here

  9. Start the engine and maintain the engine speed at 2500 rpm or more for at least 40 seconds [B].
  10. Enter the following menus: Powertrain / Engine / Trouble Codes [C].
  11. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  12. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  13. Input the DTC: P26CA12.
  14. Check the DTC judgment result.

    GTS Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system has a malfunction.
    • If the judgment result is INCOMPLETE, perform steps [B] through [C] again.
    • [A] to [C]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the auxiliary battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.

WIRING DIAGRAM

CAUTION / NOTICE / HINT

NOTICE:

  • Vehicle Control History may be stored in the hybrid vehicle control ECU assembly if the engine is malfunctioning. Certain vehicle condition information is recorded when Vehicle Control History is stored. Reading the vehicle conditions recorded in both the freeze frame data and Vehicle Control History can be useful for troubleshooting.

    Click here

    (Select Powertrain in Health Check and then check the time stamp data.)

  • If any "Engine Malfunction" Vehicle Control History item has been stored in the hybrid vehicle control ECU assembly, make sure to clear it. However, as all Vehicle Control History items are cleared simultaneously, if any Vehicle Control History items other than "Engine Malfunction" are stored, make sure to perform any troubleshooting for them before clearing Vehicle Control History.

    Click here

HINT:

Read Freeze Frame Data using the GTS. The ECM records vehicle and driving condition information as Freeze Frame Data the moment a DTC is stored. When troubleshooting, Freeze Frame Data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK TERMINAL VOLTAGE (POWER SOURCE OF INVERTER WATER PUMP WITH MOTOR ASSEMBLY)

*a

Front view of wire harness connector

(to Inverter Water Pump with Motor Assembly)

(a) Disconnect the inverter water pump with motor assembly connector.

(b) Turn the ignition switch to ON.

(c) Measure the voltage according to the value(s) in the table below.

Standard Voltage:

Tester Connection

Condition

Specified Condition

C131-3 (SWP) - Body ground

Ignition switch ON

Below 1 V

NG

GO TO STEP 3

OK

2.

INSPECT ECM (INTERNAL CIRCUIT)

*a

Front view of wire harness connector

(to Inverter Water Pump with Motor Assembly)

(a) Disconnect the inverter water pump with motor assembly connector.

(b) Turn the ignition switch to ON.

(c) Perform the Active Test using the GTS.

Powertrain > Engine > Active Test

Tester Display

Activate the Electric Water Pump

(d) Measure the resistance according to the value(s) in the table below.

Standard:

Tester Connection

Condition

Specified Condition

C131-3 (SWP) - Body ground

During Active Test

Resistance fluctuates*

HINT:

  • *: When the connector of the inverter water pump with motor assembly is disconnected, the ECM will enter fail-safe mode. In this case, duty control of the transistors in the ECM will be performed and resistance fluctuates.
  • If the resistance fluctuates while the ECM is in fail-safe mode after the connector of the inverter water pump with motor assembly is disconnected, it can be determined that the transistor is operating.
  • If the transistor does not operate, the ECM may be malfunctioning.
  • If the resistance fluctuates after turning the ignition switch to ON, it can be determined that the ECM is in fail-safe mode.
OK

REPLACE INVERTER WATER PUMP WITH MOTOR ASSEMBLY

NG

REPLACE ECM

3.

CHECK HARNESS AND CONNECTOR (INVERTER WATER PUMP WITH MOTOR ASSEMBLY - ECM)

(a) Disconnect the inverter water pump with motor assembly connector.

(b) Disconnect the ECM connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C131-3 (SWP) or C139-50 (WPO) - Other terminals

Always

10 kΩ or higher

OK

REPLACE ECM

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

    READ NEXT:

     Engine Coolant Pump Circuit Short to Ground or Open (P26CA14)

    DESCRIPTION Refer to DTC P26CA12. Click here DTC No. Detection Item DTC Detection Condition Trouble Area MIL Note P26CA14 Engine Coolant Pump Circuit Short to Groun

     Engine Coolant Pump No Signal (P26CA31)

    DESCRIPTION Refer to DTC P26CA12. Click here DTC No. Detection Item DTC Detection Condition Trouble Area MIL Note P26CA31 Engine Coolant Pump No Signal The sp

     Engine Coolant Pump Actuator Stuck (P26CB71)

    DESCRIPTION Refer to DTC P26CA12. Click here DTC No. Detection Item DTC Detection Condition Trouble Area MIL Note P26CB71 Engine Coolant Pump Actuator Stuck E

    SEE MORE:

     Manifold Absolute Pressure / Barometric Pressure Sensor Circuit Short to Ground (P010511)

    DESCRIPTION The E.F.I. vacuum sensor assembly detects the intake manifold pressure as a change in voltage. The ECM calculates the intake manifold pressure based on this voltage. The ECM calculates the EGR valve assembly and purge VSV (No. 1 vacuum switching valve assembly) opening amount accordin

     Second Row Right Seat Belt Pretensioner Deployment Control Circuit Short to Ground (B007511)

    DESCRIPTION DTC No. Detection Item DTC Detection Condition Trouble Area Warning Indicate Test Mode / Check Mode B007511 Second Row Right Seat Belt Pretensioner Deployment Control Circuit Short to Ground The airbag ECU assembly detects a short to ground in t

    © 2020-2024 Copyright www.tcorollacross.com